

Contents

- FERRMED Rail Network Definition
- FERRMED Standards
- Bottleneck analysis
- Terminals
- Costs
- Recommendations
- Conclusion

FERRMED Rail Network Definition

- Started with FERRMED Association Map
- Line by line analysis
 - FERRMED Standards
 - Expert judgement
- Optimal freight train routes selected
- Lines not meeting criteria not retained

The FERRMED Rail Network (2005)

FERRMED Standards

- Electrification: preferably 25 kV AC
- Double track x 2 on the Core Network
- UIC track width (1,435 mm)
- UIC C loading gauge
- Trains length reaching 1,500 meters with loading capacity from 3,600 to 5,000 tonnes

FERRMED Standards

- Maximum slope of 12‰ and limited ramps length
- Max axle load : 22.5t ÷ 25t/axle
- Interoperability with ERTMS L 2
 (ETCS + GSM-R + Traffic Management System (e.g. Europtirails) = ERTMS L2)
- Availability of capacity for Freight train 24h/day and 7 days/week
- Locomotive and wagon concepts adapted to FERRMED standard

The FERRMED Rail Network (2025)

Compliance with FERRMED Standards

- **Electrification**: the majority of the lines used by FERRMED Network are electrified
- **Slopes:** the FERRMED Network routes comprises lines with slopes ≤ 12 ‰ and new base tunnels decrease gradients
- **Signalling**: ETCS L1 and L2 + GSM-R are being implemented
- Axle load: With new wagons, net load may be increased in keeping the current axle load of 22.5t. New lines built for 25t/axle

Non-compliance with FERRMED Standards

• Track gauge: Finland (1,524 mm)

Spain (1,668 mm for conventional lines and 1,435 mm UIC Standard for new HSL)

- Loading gauge: Several loading gauges: the aim is to have at least GB1 or PC 410, new lines built in UIC C gauge.
- Freight train length: Current European average: 400 m, the aim is to reach an average of 750 m with 1,500 m train length. Solve: coupling issue and synchronous braking system
- Ports and terminals: Siding tracks increase up to 1,500 m

Bottleneck Analysis

- Theoretical capacity of each line calculated
- Capacity compared with train traffic
- Residual capacity determined
- Bottlenecks identified based on :
 - residual capacity
 - relative capacity (track occupation)
 - variation of traffic intensity

Bottleneck Locations

Bottleneck Locations

Bottleneck Comments

- Some 2020 bottlenecks will not be solved as they disappear in the 2025 case because of planned projects
 - the number of 2020 bottlenecks to solve < 2025
 - we do not propose as much linear upgrade in 2020 as in 2025.

Bottleneck Locations

Bottleneck Locations

Bottleneck Analysis Results

	Scenario				
Country	2020 Reference	2020 Medium	2025 Reference	2025 Medium	2025 Full
Finland	1	1	1	1	1
Sweden	1	3	3	3	3
Norway	1	1	1	1	0
Denmark	1	0	0	0	0
Germany	2	2	5	6	2
Netherlands	0	0	0	0	0
Belgium	0	0	0	0	0
Luxembourg	0	0	0	0	0
United Kingdom	0	0	0	0	0
France	3	3	6	8	2
Switzerland	4	4	5	5	2
Italy	4	4	5	4	3
Spain	0	0	3	3	1
Total number of bottlenecks	17	18	29	31	14
Bottleneck decrease N		No change		Bottleneck increase	

The 2025 Full FERRMED Rail Network

Costs up to 2025 by scenario

Recommendations

Recommendations

- To change the width of the tracks in Spain from the French border.
- To develop the automatic coupler (tractive and compression efforts with wire data transmission)
- To increase the freight train length: 1000 m
 - **2** 1500 m
- To solve the detected bottlenecks and to build the Tarragona – Castelló new line.
- To construct by-passes of major conurbations

Outcomes

 High performance parallel lines and almost dedicated lines according to passenger or freight traffic

Autocoupler & long trains with radio or wire data transmission

 A rail network available for freight transportation 24 h / 24 and 7 days / 7

Unified management and monitoring systems (ERTMS)

