

IMEC 1984 - 2007

1984

Established by state government of Flanders in Belgium

Non-profit organization

Initial investment: 62M€

Initial staff: ~70

2008

One of the <u>largest independent R&D</u> <u>organizations in this field.</u>

Annual budget 2008: 262M€

Staff (2008): $> 1650 \rightarrow >55$ nationalities

Collaboration with >600 partners worldwide

< 17% government/state funding

Heterogeneous Systems:

'More Moore' and 'More than Moore' go hand in hand

- Wireless applications
- biomedical applications
- Automotive applications
- ...

Holst Centre

More Moore & More than Moore

More "Moore"

2007 Ranking IC manufacturers

(after IC Insights)

Majority of top IC-manufacturers build on IMEC for providing research knowhow as critical input to their process development activities

Introduction to IMEC's Solar Cell Research

May 2009

Jef Poortmans Program Director

Strong history in solar cell research

Technology transfer to Photovoltech 2002-2003:

2001: Creation of Photovoltech

2000: Start of III-V solar cell activities

100

1998: Start of organic solar cell activities

1994: Start of thin-film crystalline Si solar cell activities

1993: Build-up of crystalline Si solar cell pilotline

(a-Si:H solar cells, till 1988)

Macro-trends in PV/Si Solar Cells

Less "grams of Si / W_p"

- Reduced (→ "zero") wafering loss and active layer thickness
- Efficiency increase > 20 %
 (and in very long term: recycled Si from end-of-life modules)

Reduction of mfg cost

- Equipment scaling and increase of areal throughput
- Fab scaling MW/yr → GW/yr
- Reduction (phase out) expensive materials (Ag, Al-paste)
- Standardisation & vertical integration
- Integration cell/module manufacturing

Speeding up the PV learning curve

- Increased price competition from new technologies
- Accelerated reduction of feed-in-tariffs
- PV dedicated equipment

Critical: Industry-wide acceptance of a roadmap

Thin-wafer silicon solar cells

The future of c-Si PV technology by IMEC

Si-PV activities

i-PERC: Passivated Emitter and Rear Cells Eye-catcher 2008

Material	Thickness	Efficiency	
	[µm]	[%]	
Mono	130	17.6	
Multi	120	16.8	
EFG	170	16.6	

"i-PERL" concept passivated emitter and rear local back surface field

Efficiency gain (no shadowing loss)
Front-surface passivation becomes easier (no metal);
Simplified module processing (with thinner wafers);
More homogeneous look to module (esthetics)

Si-PV activities: Si-foils The Slim Cut: Eye-catcher 2008

Si-foils: SLIM cut/spalling

Thermal coefficient of expansion

- Metal bonded at high temperature on silicon
- Upon cooling down, high stress
- Crack initiation at the interface (where the stress is the highest)
- Goes deep in the bulk (if interface strong enough)

- Crack trajectory remains parallel to surface
- Known as substrate "spalling effect" (usually an unwanted behavior)

Si-foils: SLIM cut

Implantation-free stress-induced lift-off

Si-foils: SLIM cut / Calculated crack propagation

Purely mechanical modeling

OPV-Roadmap

IMEC-OPV: activities and eye-catchers 2008

Materials synthesis

- Low-Eg polymers
- Polymers improved stability

Cell concepts

- Multijunctions
- Inclusion of nanoparticles
- Novel cell concepts

Technology development

- Solution processing of polymers
 - Screenprinting
 - Inkjet
 - Spray coating
- Small molecules

OPV@IMEC

- Controlled processing of new materials has resulted in further improvement of efficiency:
 - 5.4 %
- To allow for:
 - Better synergy of OPV activities *
 - Increased throughput
 - Increased efficiencies

all OPV activities are concentrated in one lab:

the O-line

 enhanced processing of small molecule devices (evaporation) as well as polymer based solar cells (spraycoating)

Spray coated top-contact for Organic Solar Cells

Our newest lab: the O-line!

- Purpose: concentrate all OPV activities into one lab
 - Allows for:
 - Better synergy of OPV activities
 - Increased throughput
 - Increased efficiencies

Milestone: installation complete, lab ready to use!

O-line status May 2009

- Integrated solar simulator
- 6 " spin coater
- Angstrom HV metal evaporator (6 sources)
- Lesker Spectros HV metal and organic evaporator (12 sources)

O-line status May 2009

O-line status May 2009

Multi-junction solar cells: State-of-the-art

Record conversion efficiencies obtained (32% under 1 sun, 40.7% under concentration) - NREL

Key technologies:

- current matching of top and middle cell
- wide-gap tunnel junction
- exact lattice matching (1% Indium added in GaAs cell)
- InGaP disordering
- Ge junction formation

IMEC Approach for concentrator cells: mechanically stacked cells

- 6 terminal device (2 contacts/cell)
 => current matching not required
- Nominal efficiency: + 1.5...2 %
- System level efficiency improved (no losses by spectral variations)
- Modular: optimized and alternative cells can easily be incorporated
- No tunnel junctions needed
- Micro-system integration and reliability know-how at IMEC
- The Ge bottom cell is susceptible for application as stand-alone cell in TPV-applications

IMEC Approach: relevant expertise

MOCVD growth and processing of (world-class) InGaP and GaAs solar cells.

First demonstrator of thin, one-side contacted GaAs cell

IMEC III-V Cell technology update

Recent result: Improved thinned-down, one-side contacted, IR-transparent GaAs solar cell transferred to separate Ge substrate

Performance close to standard GaAs solar cell Record efficiency for IR-transparent GaAs cell New demonstration towards validity of IMEC technology

	Jsc (mA/cm ²)	Voc (V)	FF (%)	Eff (%)
Best Cell	28.2	1.033	80.1	23.4
Average	28.0 ± 0.6	1.014 ± 0.008	78 ± 2	22.2 ± 0.8

Summary

- Large ambitions on European level to make PV a major player on electricity generation in 2020:
 - 12% of electricity supply
 - > 400 GW installed in Europe
- Si-PV Affiliation Program "Creating a Revolution through Accelerated Evolution of Si-based PV"
 - is based on a aggressive roadmap towards thinner cells and higher efficiencies
 - First partner signed in
- "Beyond and besides Si PV" activities
 - Organic PV
 - Broad range of approaches in OPV with excellent results for both polymer and small molecules
 - O-line is starting operation
 - High-efficiency PV stacks
 - Significant step forward for stack based on combination of thin Ge and thin-film III-V solar cells
- IMEC's PV-strategy is based on comprehensive approach covering three complementary sustainable PV-technologies (= compatible with multi-tens of GW production)

Vlaams Fotovoltaisch Initiatief

- Public support (Flemish government) for largescale investment in PV R&D-equipment
- Public part of the investment ≈ 10 M€
- Covers:
 - Full PV value chain (materials → grid integration)
 - Three R&D-partners involved
 - University Hasselt (material synthesis, material characterisation)
 - IMEC (cell & module development & analysis)
 - University Leuven (PV-systems & grid integration)

