Soil Biorenovation of heavily depleted agricultural soils:

Benefits of using Efficient Microbes to improve soil health & fertility in heavily depleted agricultural soils in Belize

BELIZE

Soil Characteristics

South

(Citrus, Bananas, Cacao)

☐ Inceptisols

- Clay above 45% in the first horizon
- low in depth
- pH moderate 5
- OM% below 3
- K low, Ca & Mg moderate, N- low, P low

□Ultisols

- High clay content
- pH below 4
- OM% below 3
- K low, N- low, P low, Fe-high

North

(Sugarcane, Grains Vegetables)

□ Inceptisols

- Clay above 45% in the first horizon
- low in depth
- pH above 7
- OM% below 4
- K low, Ca high, N- low, P low

□ Vertisols

- Clay above 45% in the first horizon
- low in depth
- pH above 7
- OM% below 3
- K low, Ca high, N- low, P low
- Poorly drained
- High water holding capacity

The Challenge in Agriculture

to produce more food on a declining land area, with soils and ecosystems that are continually being degraded — all while using less water, energy and natural resources under difficult economic circumstances.

Our Goal

* to accelerate soil health and productivity while helping growers to stay profitable.

3 Simple Principles to build soil fertility, make them more healthier & productive

Problem:

- disturbation as little as possible
- 2. maintain some sort of ground cover
- 3. have a diverse mix of plants &/or animals where possible

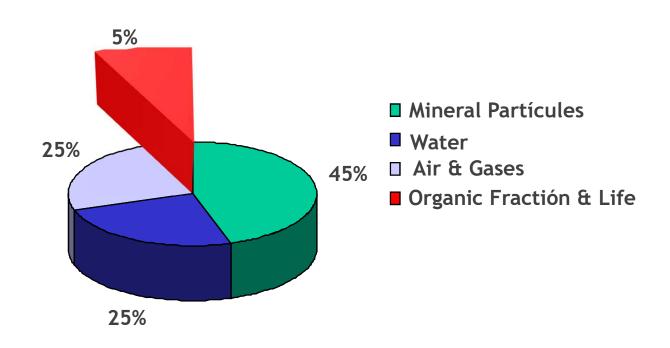
Solution

*add biologicals & carbon source

An Economic & Ecological Alternative for Soil Biological Renovation

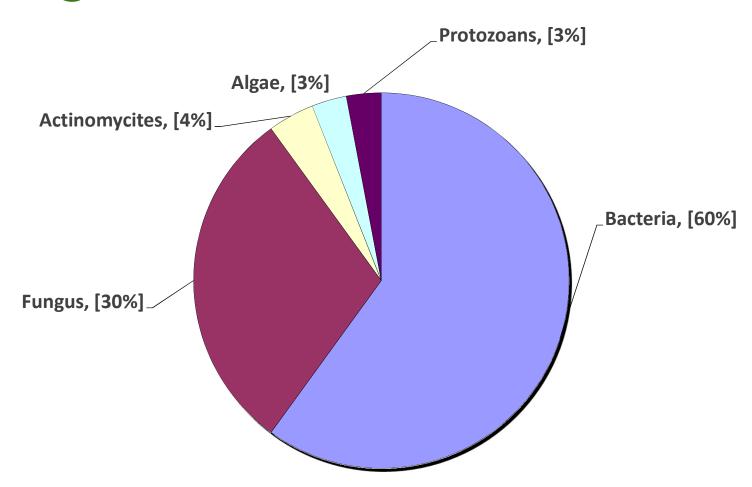
Why?

What is Soil?


Mechanical Support of plants

Large quantities of Organic substances

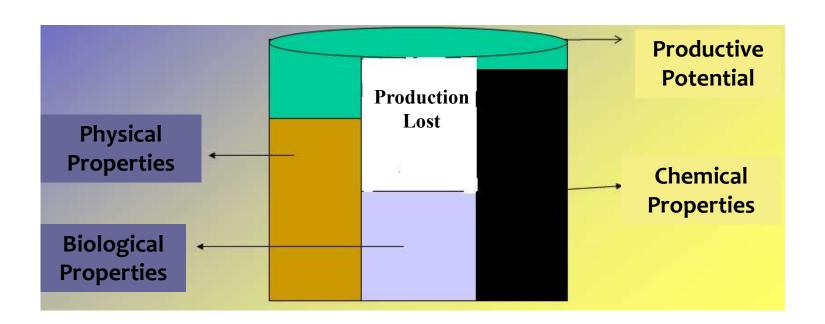
Site of one of the most **Dynamic biological interaction**



Soil is the Basis of Sustainability

Organisms Present in Soil

MICROBIOLOGICAL CLASSIFICATION OF SOILS


SOIL TYPE	MICROORGANISMS TYPE	TYPE OF AGRICULTURE
DISEASE INDUCERS	Fusarium sp. Phytium sp. Botritys sp.	Modern
DISEASE SUPPRESSORS	Penicillium sp. Aspergillus sp. Trichoderma sp.	Ecological
ZIMOGENOS	Lactobacillus sp. Sacharomyces sp.	Organic
NUTRIENTE SINTHESIZERS	Rhizobium sp. Azospirillum sp. Azotobacter sp.	Natural

SOIL FERTILITY

The level of agricultural production cannot be more than what is permited by the most limiting and essential factors of plant growth.

Microorgansims & Soil Carbon: Why?

- * Direct archarolagist amplant ugrowthe / organic matter plant sygnamic matter
- * Organic thatter: tenergy resource for microbes in The Plant system will transfer that energy to the
 - soil in order to naturally increase microbial
 Microbes are essential for healthy soil & increase soil population productivity.

Microorgansims & Soil Carbon: Why?

- * Plants grow better in microbial inoculated soil
 - Fungal-to-bacterial ratio higher
- * Ifungal ratio + I carbon content = Increase energy flow into the plant

INCREASE PRODUCTION

Important Functions of Microbes in the soil

Mineral Solubilization

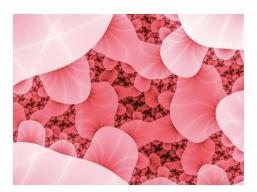
Mineralization of Organic Matter

Nitrogen Fixation

Chelation of Minerals

Absorption & translocation of minerals

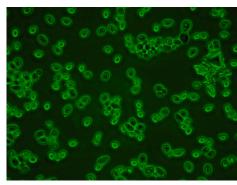
Root Growth & Morphology


Enzymes & Vitamin Production

Production of phytohormones

Soil Agregation & Stability

What is in EM Technology™?


It consists of 3 groups of well known class of microorganisms that synergistically work with each other to create an antioxidative environment within the degraded soil environment where they are placed.

Photosynthetic

Lactobacillus

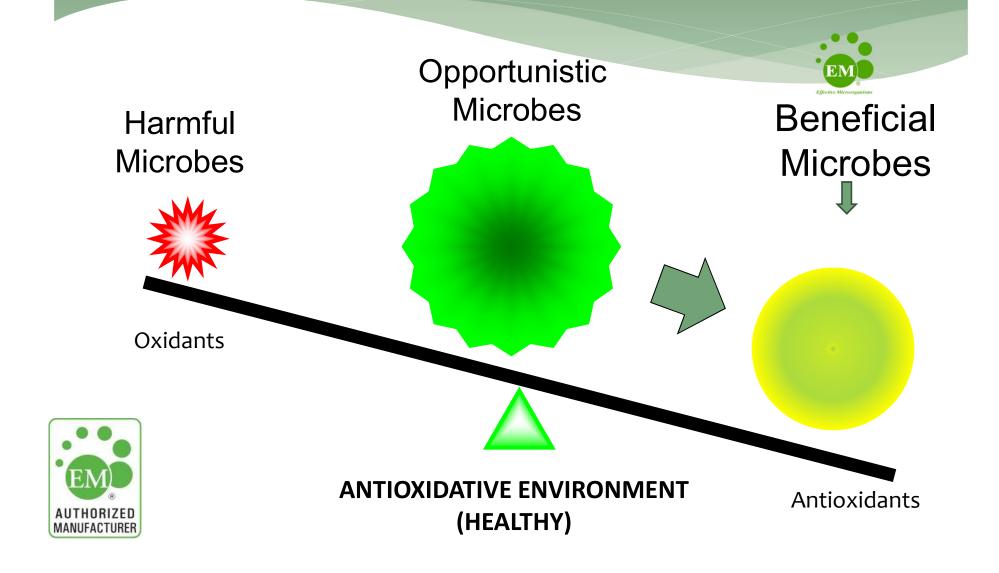
Saccharomyces

Photosyntheic Bacteria

(soil, sea, water)

Lactic Acid Bacteria

(yogurt, cheese, etc)


Fermenting Yeast

(bread, wines, beers)

Not noxious, not pathogenic, not genetically modified, not chemically synthetisize

A Biorenovative Transformation using EM Technology™

Function: Acts Specifically on Organic Matter

- Accelerates Decomposition: Separation of organic compounds (proteins, sugars, fat, fibers, etc.).
- ☐ Acts in two principal ways:
 - I) Competitive Exclusion of pathogenic microrganisms.
 - II) Production of beneficial substances:

:: Vitamins :: Antioxidants

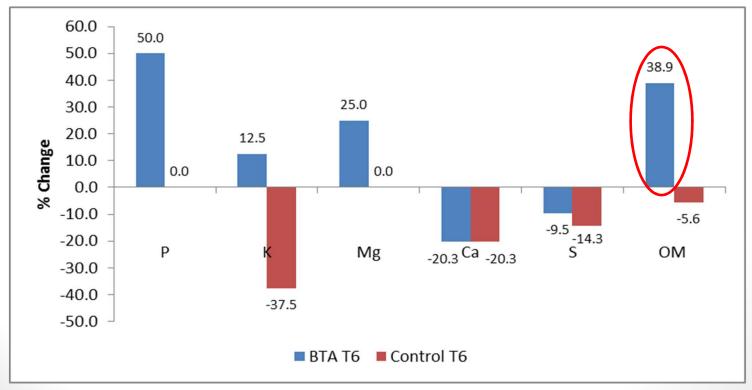
:: Aminoacids :: Enzymes

Soil Biorenovation using EM Technology™ in young citrus groves on Calcitic & Acidic Soils in Belize

(EM™ with Humic Acid Fertilizer Programme)

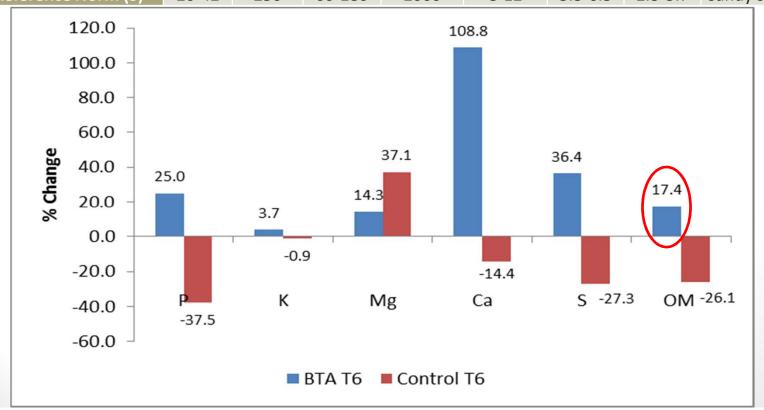
Ing. Lestor Cabral (CREI)

Ing. Yanis Murcia (CREI)

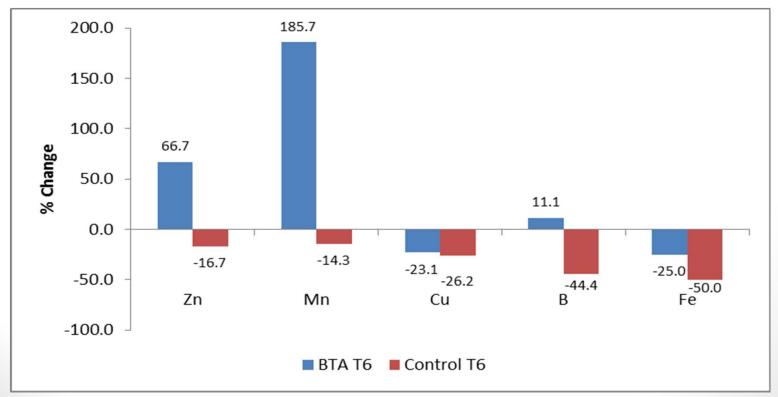

*MAgr.; Ing Agr. William Usher (BAEL)

Nutritional treatment #1: Drench application in Calcitic & Acidic Soils

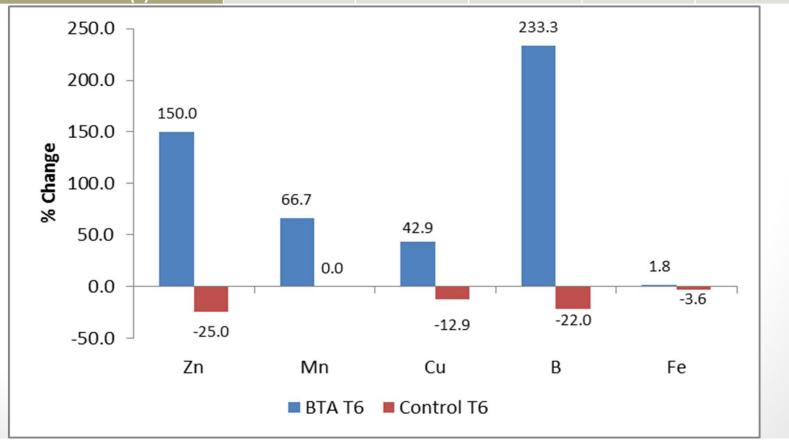
	Calcitic:	Acidic
Product	ECO HUM RX +, EM Agriculture	ECO HUM RX +, EM Agriculture
Acreage/trees	1 acre (100 trees)	1 acre (100 trees)
Type a soil	Alkaline soils, pH: 8	Acid Soils, pH: 4.9
Evaluation period	6 months	6 months
Dose per acre	2.5 L/acre 20 L acre	2.5 L/Acre + 20L/acre
Frequency	Two applications in total 1st application September last week 2nd application March,2014	Two applications in total 1st application September last week 2nd application March, 2014
Method	Drench to roots	Drench to roots


Results – Soil Analysis (Calcitic Soils) Macro Nutrients

Time	Content (%)							
	Р	K	Mg	Ca	S	рН	OM (%)	C.E.C. (%)
ТО	10	160	96	7532	21	8	1.8	38.8
With EM™ (BTA T6)	15	180	120	6000	19	8	2.5	33.1
No EM™ (Control T6)	10	100	96	6000	18	8	1.7	37.1
Reference Norm (S)	26-42	150-250	60-180	1000- 2000	8.00- 12.00	5.5-6.5	2.3-3.7	Clay soils


Results – Soil Analysis (Acidic Soils) Macro Nutrients

	Nutrient Content (%)							
	Р	K	Mg	Ca	S	рН	OM (%)	C.E.C. (%)
Т0	16	214	70	479	11	5.4	2.3	5
With EM™ (BTA T6)	20	222	80	1000	15	5.8	2.7	5.7
No EM™ (Control T6)	10	212	96	410	8	5.1	1.7	5
		150-		1000-				
Reference Norm (S)	26-42	250	60-180	2000	8-12	5.5-6.5	2.3-3.7	sandy soil

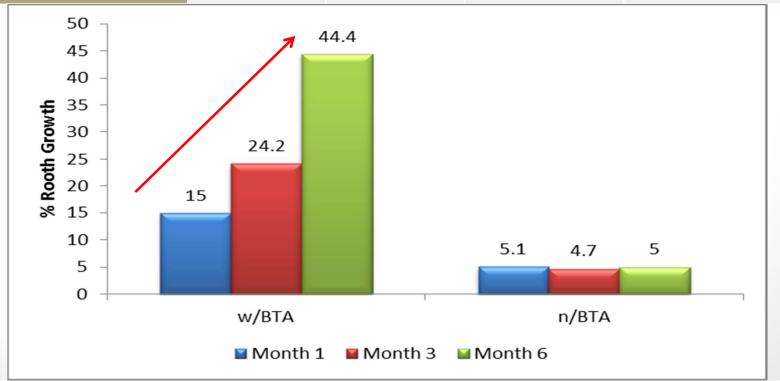

Results – Soil Analysis (Calcitic) Micro Nutrients

Time	Contents (ppm)							
	Zn	Zn Mn Cu B Fe						
T0	1.2	7	1.3	0.9	20			
With EM™ (BTA T6)	2	20	1	1	15			
No EM™ (Control T6)	1	6	0.96	0.5	10			
Reference Norm (S)	3.0-4.9	15-29	0.6 -1.2	0.6 -1.2	12 -24			

Results – Soil Analysis (Acidic) Micro Nutrients

	Nutrient Content (ppm)					
Time	Zn	Mn	Cu	В	Fe	
T0	0.4	6	0.7	0.3	55	
With EM™ (BTA T6)	1	10	1	1	56	
No EM™ (Control T6)	0.3	6	0.61	0.234	53	
Reference Norm (S)	3.0-4.9	15-29	0.6 -1.2	0.6 -1.2	12 -24	

Results – Root Growth Analysis (Farm 1 -Calcitic)


		Root Growth on Farm 1				
Time	With EM™	Technology	Without EM™ Technology			
	Weight (g)	% weight change	Weight (g)	% weight change		
Month 0	193		192			
Month 1	222	13.1	199	3.4		
Month 3	237	18.6	198.8	3.4		
Month 6	250	22.8	198.8	3.4		

Results – Root Growth Analysis

(Farm 2 - Acidic)

Time		Root Growth on Farm 2			
	With EM™ Technology		Without EM™ Technology		
5	Weight (g)	% weight change	Weight (g)	% weight change	
Month 0	190		189		
Month 1	223	15.0	199	5.1	
Month 3	251	24.2	198.4	4.7	
Month 6	342	44.4	199	5.0	

Effect of Soil Biorenovation on Sugarcane Production Parameters in Belize

Use of EM Technology ™

MSc. Lorenzo Quiroz (BSI)
Ing Agr. Lenardo Pech (BSCFA)
Ing Agr. Marcus Osorio (SIRDI)

* Ing Agr. William Usher (BAEL)

BSI Trial:

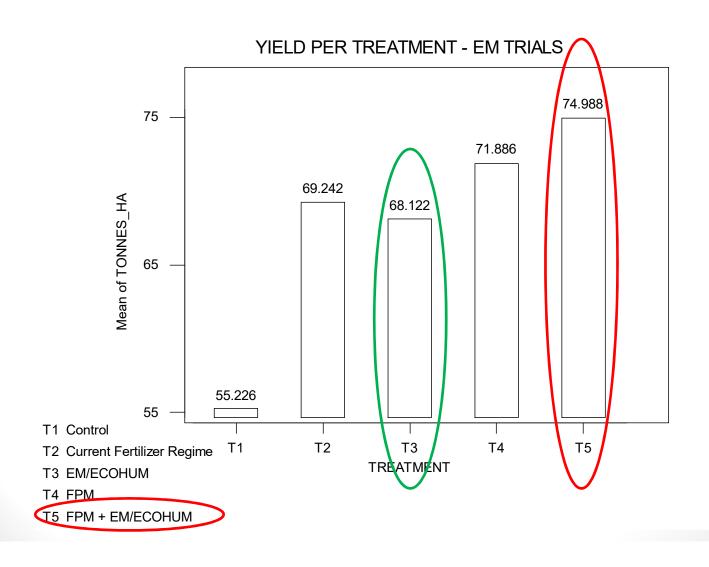
Fair Trade Obligation: 3.2.23 NEW 2019* Improve Soil Fertility

Objectives/Methodology

 Increase productive capacity of the sugarcane crop within the areas treated with the combination of **Effective Microbes** (EM™) and Eco Hum™ (Humic Acids) soil applied root drench fertilizers.

T1 Control - No fertilizer or soil amendment done

T2 CFR - (Current Fertilizer Regime) - 660 lbs./ha of 22 - 10.5 - 22 + Cu + Zn at 1% at planting and 110 lbs/ha of 46 - 0 - 0 as side dressing 6 weeks later


T3 BAEL Technology - (EM + ECOHUM*)

T4 Filter Press Mud (FPM) at approximately 100 tonnes per ha. immediately before planting

T5 BAEL + FPM

Industry Trial Results: Increase Production with EM™ + Filterpress Mud

(Organic Amendment)

Field Results: Increase Vigor

Increased vigor and stalk thickness with the use of EM Technology™ (SIRDI, 2012).

Increased number of shoots using EM Technology™

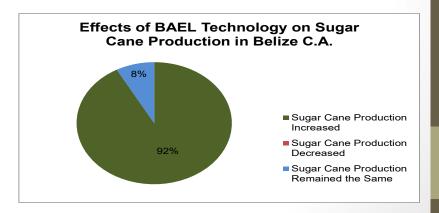
Field Results: Less Water Stress

Post Harvest Trash

Management

- 20L EM™/acre
- Reduction in weeds
- Improve soil % OM

Field Results: Farmers' Review


- Farmers attests to production hike from 25 tons/acre to 40 tons/acre.
- Farmer observed improved soil macro & micro-fauna

Mycelium growth in Cane Field where EM was applied. Courtesy Gregorio Espiritu (2013)

Filiberto Cob in his cane field in San Pedro, Corozal, Belize, C.A. (BAEL, 2013).

Conclusion

PROPER Soil Fertility Management

Incorporating spil microbes + organic matter

BIORENOVATION

- ☐ Healthy & Living Soil
- ☐ Healthy & Functioning Plant Root System
- **☐** Increase Productivity
- □ Reduce Production Cost

www.belizeagroenterprise.com

We are in more than 150 countries

www.em-la.com

For more information visit our websites

E – bael_bze@yahoo.com T- 822-3518 C -662-3518

