

Friends of the Earth Europe
EESC public hearing on "European Gas Market Policy between Market Integration and External Energy Policy –
Amending the Gas Market Directive"

How is the EU gas market today? Fine, thank you.

Figure 16 – Access to only at least 3 sources, whole year (source: ENTSO-G)

Figure 17 – RU dependence, 2020 situation, whole year (source: ENTSO-G)

Figure 18 – N-1 scenario, 2017 situation, peak demand (source: ENTSO-G)

Figure 19 – irreducible dependence on LNG, whole year (source: ENTSO-G)

How is the EU gas market today? Fine, thank you.

Figure 2: Gas imports and loss of load under extreme conditions (Current Trends, 2030).

How is the EU gas market today? Fine, thank you.

Figure 18 –LNG terminal utilization rates

Sources: IHS Markit, IGU, Company Announcements

One real problem: The decline of EU gas domestic production

Dash for new gas infrastructure...

New gas infrastructure – The new catch-all solution:

- Everyone wants to be the new European hub
- Worst case scenarios are used to justify any new project
- Gas = Solution to energy security, to cheap energy, to climate change, etc

Discussion on gas pipelines with a supplyside approach only:

- more pipelines to compensate decline of domestic production,
- more pipelines to further diversify gas supplies,
- more pipelines to reduce dependence on Russian gas

- A more <u>integrated approach</u> (gas + electricity) can seriously reduce needs for new gas investments
- A <u>demand-side approach</u> can reduce it even more significantly:

Of course, the cleanest and cheapest way to decarbonise our energy system is by reducing our energy consumption: for every 1% improvement in energy efficiency, EU gas imports fall by 2.6%.

(Marrakesh, November 14th 2016)

Our energy policy should take "efficiency first" as its abiding motto.

Before importing more gas or generating more power, we should ask ourselves: "can we take cost-effective measures to reduce our energy use that will also increase our competitiveness?"

(Riga, February 6th 2015)

but another approach is possible **SAFEGUARDING ENERGY SECURITY** IN SOUTH-EAST EUROPE WITH INVESTMENT IN BPIE

Figure 9 - Costs and savings of buildings' renovation within 20 years in South Eastern Europe (source: BPIE)

COSTS AND SAVINGS € billion – Present value	Frozen	Limited protection	Risk mitigation	Energy security
Investments	22	31	47	81
Avoided energy costs	23	42	70	106

Figure 8 - Impact of renovation scenarios on gas demand within 20 years in South Eastern Europe (source: BPIE)

- Parties committed to 'holding the increase in the global average temperature to well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C above pre-industrial temperatures'
- But.. we're on course for **3.2°C** of warming *if* all the Paris pledges to reduce emissions are kept (UNEP)
- We could be heading for **5°C** of warming if they are not

Problem: Our 2°C global carbon budget melts like snow in the sun

- Fossil gas is methane (CH4) which emits significant volumes of CO2 when burnt
- Methane is a dangerous greenhouse gas GWP 86 times higher than CO2 (20 years)
- Though more short-lived in the atmosphere (12yrs)
- And gas leaks all along the production and distribution system

New NASA study analysing the boom of global methane emissions since 2006:

- Atmospheric methane emissions have been rising by about 25 teragrams each year
- About 17 teragrams per year of the increase is due to fossil fuels (mostly gas)
- Methane emissions from natural gas, oil and coal production and their usage can be up to 60% greater than inventories.

Methane leakage A problematic lack of acknowledgement

CH4 CONCENTRATION BY YEAR

Figure 1. Observed methane concentrations in comparison to IPCC scnearios. Source: Saunois et al 2016, Global Carbon Project

- Methane concentration at the upper end of IPCC scenarios
- Mounting scientific evidence showing that methane emissions from natural gas, oil and coal production and their usage can be up to 60% greater than inventories.

Tyndall Center scientific study concludes:

- EU's 2°C carbon budget: 23-32 bn tonnes of CO2
- At current level of emissions, Europe has at most
 9 years of energy-only emissions left before its
 2°C carbon budget runs out
- 12 years at best if complete switch from coal/oil to gas

To meet Paris commitments, the EU should:

- Mitigate at >12 to 16% p.a. starting now
- 75% reduction in CO2 by 2025
- Fully decarbonised energy system by 2035-2040

→ It is therefore not (and should not be) about new pipelines, debate should be about what we will do with our gas system in an inevitable post-fossil fuel era.

IPCC Carbon budgets: 1000GtCO2 for 2°C EUROPE

Table 2.2 | Cumulative carbon dioxide (CO₂) emission consistent with limiting warming to less than stated temperature limits at different levels of probability, based on different lines of evidence. [WGI 12.5.4, WGIII 6]

Cumulative CO ₂ emissions from 1870 in GtCO ₂												
Net anthropogenic warming a	<1.5°C			<2°C			<3°C					
Fraction of simulations	66%	50%	33%	66%	50%	33%	66%	50%	33%			
meeting goal ^b												
Complex models, RCP	2250	2250	2550	2900	3000	3300	4200	4500	4850			
scenarios only c												
Simple model, WGIII	No data	2300 to	2400 to	2550 to 3150	2900 to	2950 to	n.a. e	4150 to	5250 to 6000			
scenarios d		2350	2950		3200	3800		5750				
Cumulative CO ₂ emissions from 2011 in GtCO ₂												
Complex models, RCP	400	550	850	1000	1300	1500	2400	2800	3250			
scenarios only c												
Simple model, WGIII	No data	550 to 600	600 to 1150	750 to 1400	1150 to	1150 to	n.a. e	2350 to	3500 to 4250			
scenarios d					1400	2050		4000				
Total fossil carbon available in 2011 f: 3670 to 7100 GtCO ₂ (reserves) and 31300 to 50050 GtCO ₂ (resources)												

Based on:

- Non-OECD peak emissions between 2021 & 2025 + mitigation far beyond their Paris NDCs
- Three estimates of Europe's share of the OECD carbon budget (grandfathering, population, GDP)
- = EU's carbon budget of 23 and 32 billion tonnes of CO2

Figure 13 - Comparison of wholesale gas prices in Europe between 2013 and 2015 (Source: EC internal assessment)

Because LNG is good and efficient and because US shale gas is cheap — No and No.

Figure 18 -LNG terminal utilization rates

Sources: IHS Markit, IGU, Company Announcements

US LNG vs Russian pipe - Prices

Source: Argus, thierrybros.com