CCS PROJECT
IN THE CEMENT INDUSTRY

1. ECRA CCS STUDY
2. NORCEM CCS PROJECT
3. CIUDEN PROJECT

23 November 2010

By Jean-Marie CHANDELLE - CEMBUREAU Chief Executive
The ECRA CCS Project
Outline

- CO₂ Reduction Scenarios and Roadmaps towards CCS
- ECRA CCS Project
- Oxy-fuel Technology
- Post-Combustion / Chemical Absorption Technology
- Summary and Outlook
IEA roadmap for the cement industry

BLUE MAP-scenario: max 1.6 Gt/a in 2050

mitigation potential

- efficiency: 44%
- RDF clinker ration: 56%
- CCS

source: IEA CCS Roadmap, 2009
IEA CCS Technology Roadmap

- 20–30 full-scale demonstration projects in the power sector have to be launched in the next years if CCS shall be commercial by 2030.

- In addition to the power sector, 10–20 full-scale demonstration projects for CO₂ capture in industrial processes should be operational by 2025.

- CCS investments will only occur if there are suitable financial incentives and/or regulatory constraints.

- 2050: 50 % of all cement plants in Europe, North America, Australia, East Asia are applying CCS, 20 % in India, China!
European projects on CCS in the cement industry

ECRA phase III CCS study

- With participants from cement industry, equipment suppliers, others
- First two reports published in 2007 and 2009

CIUDEN / Oficemen

- Objective to become European centre of CCS
- Started on power sector, now expanding view to other sectors including cement sector

Norcem CCS project, Brevik

- Small scale test rig for CCS application for post combustion
ECRA CCS Project: Objectives

- Investigations regarding the technical and economical feasibility of CCS technologies
- Sustainability aspect of CCS technologies shall be implicated
- CO₂ transport and storage are not subject of the research project
- Joint (European) research activities to meet the huge challenge of significant CO₂ reduction
- Strong interrelation to CSI, CEMBUREAU, PCA, etc. to communicate the cement industry’s activities on CCS and CO₂ reduction
ECRA started the CCS project in 2007, its third phase is commenced.

- **Phase I**: Literature Study (January - June 2007)
- **Phase II**: Study about Oxy-fuel and Post-Combustion Technology (summer 2007 – autumn 2009)
- **Phase III**: Laboratory-scale / small-scale research activities (spring 2010 – winter 2011)
- **Phase IV**: Pilot-scale research activities (time-frame: 2-3 years)
- **Phase V**: Demonstration plant (time-frame: 3-5 years)
ECRA CCS Project: Research Consortium Phase III

Cement Producers: Buzzi Unicem, CRH, Cementos Molins, Cemex, Cimpor, HeidelbergCement, Holcim, Italcementi, Lafarge, Phoenix, Schwenk, Secil, Spenner, Titan, Vicat, PZW Wittekind

Cement Organizations: CEMBUREAU, Cemsuisse, CSI, VDZ

Equipment Suppliers: Polysius, FLSmidth, KHD

Gas Producers: Praxair
CCS in Cement Industry – Two Options

Oxy-fuel
- integrated concept
- flue gas recirculation

Post-combustion capture
- end-of-pipe technique
- chemical flue gas scrubbing

ECRA CCS Project: Work Packages Phase III

Within the framework of phase III, the research work is organised in individual work packages. Cooperation with external project partners is envisaged.

Work packages oxy-fuel technologies:
Process simulation, burner design, investigations on clinker quality, optimization of sealings and refractories, flue gas conditioning, layout of an oxy-fuel cement plant

Work packages chemical absorption technologies:
Modelling of absorption processes, amine degradation studies, small-scale trials with cement flue gases, FEED study
Oxy-fuel – Research progress

Investigations on clinker quality: Study executed by the *Research Institute*

- Identification of most important parameters on clinker susceptibility to CO subscripts 2 -atmosphere

General Flue Gas Conditioning: Study executed by *Praxair*

- Development of a plant for compression and purification of CO subscripts 2 rich flue gas from an oxy-fuel cement kiln
- Including process and equipment engineering, plant design and capital costs estimation

Optimization of sealings: Study executed by *Aixergee*

- Identification and classification of leakage locations
- Development and evaluation of three solutions based on different technical approaches
Oxy-fuel – Impact on Clinker Burning Process

Issues arising from oxy-fuel application investigated in phase II:

- Influences of an increasing CO₂ partial pressure on material conversion
- Influences on kiln operation due to changed burning atmosphere
- Integration of chemical plant components
- Modifications of the plant technology
- Maximum capture rate
- Energy demand and costs

Areas requiring further research:

Influences of an increasing CO₂ partial pressure on

- Process modelling
- Laboratory tests
- Optimization of seals
- Waste heat utilization
- Burner design
- CO₂-purification facility
- Clinker Cooler Design
- Refractory lining
Oxy-fuel – Cost Estimation

Investment costs

New installation:
2030: 330 - 360 Mio €
2050: 270 - 295 Mio €

Remark: Costs for demonstration plant in 2020 will be significantly higher

Operational costs

plus 8 to 10 €/t\(_{\text{clinker}}\) on top of base case
transport and storage excluded

Total cost increase of about 40 %

Additional costs per ton of avoided CO\(_2\): 33 - 36 €/t\(_{\text{CO}_2}\)
Post-combustion – Research progress

• Modelling of the CO$_2$ absorption and desorption. Inclusion of the model into the Research Institute’s cement plant simulation
• Investigating the solvent degradation process with cement-specific flue gas constituents
• Plan of a small-scale test site and application for funding
Post-combustion – Small-scale trials

- Location: Brevik, Norway
- Concept: Small-scale unit for testing different absorption techniques
- Dimension: approx 1 t/h
- Partial funding granted through Norwegian government
- Open to participation from others
- Vision: Operate the first small-scale post-combustion capture facility in cement industry by 2013/14
Post-combustion – Impact on the Clinker Process

Issues arising from post-combustion application investigated in phase II:
- Resulting energy and mass flows
- Influences on kiln operation due to additional equipment
- Energy efficient integration into the existing process
- Absorbent degradation
- Modifications of the plant technology
- Maximum capture rate
- Energy demand and Costs

Areas requiring further research:
- Process modelling
- Degradation experiments
- Energy integration
- Waste heat utilization
- Small-scale tests
- Alternative heat sources
Post-combustion Technology – Cost Estimation

Investment costs

Retrofit:
2030: 100-300 Mio €
2050: 80-240 Mio €

Remark: The energy/CO2 penalty has a strong influence of the overall costs

Operational costs

2030: up to 50 € per ton of CO2
2050: up to 40 € per ton of CO2

The reboiler for the solvent stripper is the most important expense factor.
Summary & Outlook

- Today, CO$_2$ capture technologies are not technically available for the cement industry
- Oxy-fuel combustion is state-of-the-art in a few other industry sectors and seems to be promising for new kilns
- Post-combustion capture is state-of-the-art in other industrial sectors, but on relatively small scale
- From a today's point of view CCS is by far too expensive for the cement industry
- ECRA CCS project is organized in five phases – from literature studies to a potential demonstration project
- ECRA research project shall enable the cement industry to give scientifically based reliable answers to political requirements in the future
CCS CIUDEN-OFICEMEN PROJECT
WHAT IS CIUDEN?

CIUDEN: Fundación Ciudad de la Energía
An initiative of the Spanish Administration

DEPARTMENT OF SCIENCE AND INNOVATION → GOBIERNO DE ESPAÑA → DEPARTMENT OF ENVIRONMENT → DEPARTMENT OF INDUSTRY AND TRADE
WHAT IS CIUDEN?

Open for international cooperation

- A public law body
- Conceived for collaborative research
- Oriented to technological development
- A non-profit organisation
WHAT IS CIUDEN?

Compostilla P.S. ENDESA

CIUDEN´s Capture TDP
Ciuden is designing, constructing and will operate Technology Development Plants (TDPs)
Budget: 180 Mill.€

Capture
- To validate close-to-market and emerging technologies for application at commercial scale

Transport
- To obtain technical criteria for design, management and safe operation of CO₂ pipelines through long-term runs

Storage
- To develop technologies and processes for injection and monitoring in saline aquifers to support industrial-scale activities
2-2-2010 OFICEMEN signed a global program of collaboration with CIUDEN. Areas that the agreement will be focus are:

– Application of technologies of oxycombustion partial in the process of cement production

– CO₂ Capture with special attention to the applicability of the technologies to the cement industry

– Contribution of CO₂ capture, transport and storage to the fulfillment of reduction of CO₂ emissions.